So what shapes can we fit together?

(...without any tiles overlapping or leaving gaps...)

- Imagine tiles in the shape of a regular n-sided polygon. If they do fit together without leaving gaps and without overlapping, then they must fit together as in the diagram above, with m tiles all meeting at a point.
- m and n are not necessarily equal; and they must (of course!) be whole numbers.
In the diagram above, we are showing the interior angles of all m tiles. It is obvious that all such angles must add up to 360°.
So if we call the interior angles x, then

$$
m x=360^{\circ} .
$$

If each polygon has n sides, then the interior angles of each polygon must add to $180(n-2)^{\circ}$ (we discussed this result today, 2 March).

This means that each interior angle must be $180(n-2) / n$ degrees.
If m of these tiles fit together (see the above diagram), then m such interior angles must add up to 360°. So:

$$
\frac{180 m(n-2)}{n}=360^{\circ}
$$

which can be rearranged to give

$$
m=\frac{2 n}{(n-2)}
$$

Remember that m is the number of tiles which meet at a point, and n is the number of sides of each polygonal tile.

So if we treat n as the independent variable and m as the dependent variable, we can draw up a table, and use the equation

$$
m=\frac{2 n}{(n-2)}
$$

to calculate m for any value of n, as follows:

n	m
3	6
4	4
5	$10 / 3$
6	3
7	$14 / 5$
8	$8 / 3$
9	$18 / 7$
10	$5 / 2$
11	$22 / 9$
12	$12 / 5$
13	$26 / 11$
etc	

This tells us, for example, that if we fit 6 -sided polygons together, then three of them will meet at one point. If on the other hand, we try and fit 5 -sided polygons together, we find that " $10 / 3$ " will fit at a point: in other words there will be overlaps.

As you can see, there are only three solutions in which both n and m are whole numbers: $n=3,4$ and 6 . In other words, only triangles, squares and hexagons will fit together. Nothing else will!

